Skeletal System

Functions of Bone

Support Soft tissue

<u>Protection</u> Internal organs

Ex's... brain, spine, heart

Movement assistance

Due to their connection to muscles

Mineral storage and release

Ca & P

Hemopoiesis Blood cell formation

Energy storage From **yellow marrow** to **red marrow**

Skeletal System: Divisions

An adult skeleton consists of _____ bon 206

Axial Skeleton: 80 bones

Composed of:

Hyoid Bone
Hyoid bone
Hyoid bone

skull, hyoid bone, vertebral column, sternum, ribs

Are we born with 206 bones?

Skeletal System: Divisions

Appendicular Skeleton:

126 bones

Composed of:

Upper & lower extremities (limbs/appendages)

Pectoral (shoulder) girdle

Pelvic (hip) girdle

Types of Bones

Most bones are classified by...

Parts of a (long) Bone:

- Long central shaft = diaphysis
- Ends of bone = epiphyses
- Each epiphyses forms a joint = articulation
 - Articular cartilage
- Outer surface of bone = periosteum
 - Joins w/articular cartilage (at end)
 - Blood vessels, osteoblasts (bone growth and repair)
 - Fxn: bone nourishment, attachment to ligaments, growth/repair

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. **Epiphyseal plates** Articular cartilage **Proximal** Chomas no epiphysis **Space containing** red marrow Compact bone. Medullary cavity. Yellow marrow. Periosteum **Diaphysis** Distal Femur epiphysis

Parts of a (long) Bone: Internal Features \rightarrow

- Compact bone →
 - External layer of all bones and diaphyses of long bones
 - Fxn: protection, support
 - Site of yellow marrow: rich in fatty tissue energy storage
- Spongy bone →
 - Forms most of short, flat, irregular bones and the epiphyses of long bones
 - Site of red bone marrow

Copyright @ The McGraw-Hill Companies, Inc. Permission required for reproduction or display. **Epiphyseal plates** Articular cartilage **Proximal** Spongy bone_ epiphysis Space containing red marrow Compact bone. Meduliary cavity. Yellow marrow_ Periosteum -Diaphysis Distal **Femur** epiphysis

Bone Tissue Histology

- Bone (Osseous) Tissue:
 - 25% water
 - 25% protein fibers
 - collagen
 - 50% mineral salts
- Bone Cells:
 - Osteoblasts (bone building cells)
 - Osteocytes (mature bone cells)
 - Osteoclasts (bone-destroying cells)

Bone Formation (Ossification)

- *Bone development begins @ 2 months of prenatal life
- *2 types of ossification \rightarrow
- 1. Intramembranous ossification
 - Forms from connective tissue
 - Forms flat bones of skull and mandible
- 2. Endochondrial ossification
 - Forms from cartilage
 - Most form this way*

Bone Growth

- Interstitial growth: grow in <u>length</u> at epiphyseal/ "growth" plate (band of cartilage)
- Appositional growth: grow in thickness

Bone Growth

Factors Affecting Bone Growth

- Adequate dietary intake of...
- Hormones for stimulation of bone growth during childhood
 - IGF, hGH
- Thyroid hormones and insulin
- Sex hormones

HW:

Explain WHY each of these affect bone growth *can use outside sources

Bone Resorption

- Osteoclasts break down bone tissue
- Release minerals
 - Ca transferred from bone fluid → blood

- Conditions that result in decrease in bone mass:
 - Increase resorption
 - Decrease ossification (osteoblasts)

Bone Remodeling

- "Replacement of old bone tissue"
 - At certain age, pituitary gland stops production of growth process
 - Epiphyseal plate → epiphyseal line
- Ex: distal femur replaced every 5-6months
- Due to undergoing large amount of stress or injury
- Bone fractures →
 - Break in a bone

Open vs. Closed Fractures

- Open →
 - AKA compound fracture
 - Bone penetrates thru skin; "open to air"

- Closed →
 - AKA simple fracture

Open or compound fracture

Fracture intact overlying skin

Degree of Fracture

- Complete →
 - Fragments are completely separate
- Incomplete →
 - AKA greenstick
 - Break does not extend

Greenstick fracture.

- Comminuted →
 - Broken, splintered, crushed into >3 pieces

Bone Fracture Repair

- 1. Fracture hematoma → clot
- 2. Soft callus (after 48hrs) → procallus
- 3. Bony (hard) callus
- 4. Remodeling (end of week 1, cluster of cartilage and bone form throughout injury site) – ¾ months

Osteoporosis

- Bone reabsoprtion outpaces bone formation
- Affects mostly who?
- Sex hormones and other hormones maintain bone tissue by stimulating osteoblasts to form new bone
- Osteoporosis is responsible for:
 - 1. backbone shrinkage (results in)
 - 2. hunched backs
 - 3. bone fractures

Osteoporosis Risk Factors

- Body build
- Weight
- Smoking
- Ca deficiency of malabsorption
- Vitamin D deficiency
- Lack of exercise
- Certain drugs
- Family history
- Menopause

Skull Topography

Foramen – tiny openings for nerves and blood vessels

Skull Topography

- Suture– connection btwn lg. bones
 - In fetal skulls, called fontanels
- Fissure— wide gap btwn bones

Skull Topography

- Sutures:
- 1. coronal: btwn frontal and parietal
- 2. lamboidal: btwn occipital and parietal
- 3. squamosal: btwn temporal and parietal
- 4. sagittal: between parietal

SKULL

- Chambers lined w/mucous membranes = sinuses
 - 5 → frontal, ethmoid, sphenoid, two maxillary
 - Inflammation w/in results in: sinusitis
 - Build up of fluid pressure (block in drainage) = sinus headache

